Syllabus & Homework
Lecture Slides
Lecture 1 : Introduction
Lecture 2: Transformations
Lecture 3: Rigid Body Motion
Lecture 4 : Rigid Body Dynamics
Lecture 5 : Aerodynamics and Propulsion
Lecture 6 : Control Introduction
Lecture 7 : Control Theory
Lecture 8 : Control: LTI Systems
Lecture 9 : Model Predictive Control
Lecture 10 : Sensors
Lecture 11: State Estimation: Bayesian Estimation - Kalman Filter
Lecture 12: State Estimation: Attitude & Heading - Extended Kalman Filter
Lecture 13: State Estimation: SLAM Extended Kalman Filter
Lecture 14: State Estimation: SLAM Unscented Kalman Filter, Particle Filter
Lecture 15: State Estimation: SLAM Graph Optimization
Lecture 16: State Estimation: Quaternion EKF & SE(3) Optimization
Lecture 17: L1 Guidance
Lecture 18: Planning: Sampling-based, PRM, sPRM, PRM*, RRT
Lecture 19: Planning: Sampling-based, RRG, RRT*
Lecture X: Practical Aerial Robotics by: Stephen J. Carlson