Syllabus & Homework
Lecture Slides
Lecture 1 : Introduction
Lecture 2: Transformations
Lecture 3: Rigid Body Motion
Lecture 4: Rigid Body Dynamics
Lecture 5: Actuation
Lecture 6: Wheeled Robot Kinematics
Lecture 7: Guidance: Open-Loop, Feedback-driven
Lecture 8: L1 Guidance, Pure Pursuit, Stanley Controller
Lecture 9: Manipulation: Forward Kinematics, Manipulability
Lecture 10: Manipulation: Inverse Kinematics, Trajectory Generation
Lecture 11: Manipulation: Dynamics
Lecture 12: Planning Fundamentals
Lecture 13: Planning: Graph-based, Dijkstra, A*
Lecture14: Planning: Sampling-based, PRM, sPRM, PRM*, RRT
Lecture15: Planning: Sampling-based, RRG, RRT*
Lecture 16: Sensors
Lecture 17: State Estimation: Bayesian Estimation - Kalman Filter
Lecture 18: State Estimation: Attitude & Heading - Extended Kalman Filter
Lecture 19: State Estimation: SLAM Extended Kalman Filter
Lecture 20: SLAM Unscented Kalman Filter, Particle Filter
Lecture 21: State Estimation: SLAM Graph Optimization
Lecture 22: SLAM Smoothing, Fixed-Lag, Keyframe-based